Enclosure as a substitute for air conditioning
The Royal Ontario Museum pipes conditioned air into showcases because the building cannot effectively be air conditioned.
Influences on a showcase

Convective heat flow
Radiant energy flux
Thermal mass
Air exchange rate
Internal humidity buffer
Internal pollution rate
Pollutant reaction rate
Enclosures which contain both a humidity buffer and a temperature gradient are prone to condensation damage.
This applies even to enclosures apparently without moisture buffers, exposed to a temperature gradient.
Unnoticed condensation is a particular threat to objects in containers moved in and out of cold storage.

Ice forming within a film can shortly after putting it in a cold store.
The effect of radiation at 60 klx on the temperature and RH within a showcase. Even 100 lx raises the temperature about 2°
In a showcase, even in the dark, convective mixing is much faster than air leakage, so the exponential decay measure of air exchange rate applies.
Humidity stabilisation is often the reason for enclosing objects. Often the objects themselves can effectively buffer their own microclimate.
Enclosure stabilises the RH against variation caused by temperature change.
Enclosure reduces the RH change caused by air leakage

Rate of change of RH towards ambient of a glazed picture with card backboard and two pictures with aluminium sealed back
Internally generated pollution is a serious threat to artifacts, and can be generated from artifacts.

Left: calcium acetate nitrate on coral brooch stored with celluloid jewellery.
Right: hydrogen sulfide reacts nearly instantaneously with silver.
At least one air change per hour is needed to ventilate away internal pollution, but this will destroy the humidity stability.
Transport of art requires only brief enclosure but exposes the container to extreme challenges.

The solution is, from the outside in:
- radiation shield
- insulation
- thermal buffer
- humidity buffer
- artifact

(And a pump to reflate the truck tyres)