### Documenting and Optimizing Storage Conditions at the National Museum of Denmark



Museum Microclimates
November 2007

James M. Reilly Jesper Stub Johnsen Lars Aasbjerg Jensen



## Management Perspective for Preventive Conservation

- Identify and minimize risks
- Lengthen useful life
- Reduce repair and energy costs
- Environmental responsibility



## **Assessing Storage Conditions**

Required: meaningful, standardized determinations of degree of risk or benefit to collections





### **National Museum of Denmark**



## Environmental Assessment Project at NMD 2004 - 2007

- Strategic priority assessment
  - Census of conditions
  - Parallel effort to identify key collection elements
  - Enough capacity to properly care for collections?



## Contract with Image Permanence Institute (IPI)

- ► IPI is a university-based preservation research laboratory in Rochester, NY USA
- Joint effort with NMD scientific, conservation research, and collection management staff









## Project Design

- Monitor 200 locations
  - > 150 PEM® dataloggers
  - Tiny Tag® and BMS data
- **► IPI's Climate Notebook® software**
- Additional locations
  - Royal Library
  - Conservation Center, Ribe
  - Ribe Antiquities Collection





# Strategic and Tactical Issues in Monitoring Project Design

- Strategic goals
  - Createvariety ofoverviews
  - Evaluate alternatives in future construction



# Strategic and Tactical Issues in Monitoring Project Design

- **►** Tactical goals
  - Document
     conditions for
     all important
     collections
  - Explore known issues





#### **Difficulties With Data...**



- More data, more organizational problems
- Spreadsheets and small databases inadequate
- Naming locations
- Naming files
- Tools insufficient

# Interpretation, Analysis, and Reporting

- Strategic analysis
  - Composite overviews by site, building, department, etc.
  - Quantitative ranking of risks and benefits



# Interpretation, Analysis, and Reporting

- Tactical analysis
  - Weigh specific risks
  - Assess factors affecting climate
  - Determine possible corrective actions





## Metrics in Environmental Analysis at NMD

- Algorithms that transform temperature and RH data into standardized, quantitative estimates of decay rate
  - Chemical aging
  - Corrosion
  - Mould
  - Mechanical (Physical) Damage

| Metric                | Deterioration<br>Type                                                  | Basis for Analysis                                                | Algorithm                                                                      |
|-----------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|
| TWPI                  | Spontaneous chemical change in organic materials                       | Generalized<br>treatment of<br>hydrolysis reaction<br>kinetics    | Integrates over time, weighing each interval according to reaction rate        |
| Mould Risk<br>Factor  | Mould                                                                  | Based on empirical studies with food grains                       | Integrates over time, creates running sum of progress toward mould germination |
| Dryness               | Shrinkage and stress related damage in wood, leather, etc              | Based on physical<br>behaviour of wood<br>of "average<br>species" | Estimates moisture content using moving averages of T & RH                     |
| Dampness              | Expansion and compressive stress related damage in wood, leather, etc. | Based on physical<br>behaviour of wood<br>of "average<br>species" | Estimates moisture content using moving averages of T & RH                     |
| Dimensional<br>Change | Fatigue and stress related damage in wood, leather, etc.               | Based on physical<br>behaviour of wood<br>of "average<br>species" | Estimates moisture content and maximum dimensional change                      |
| Corrosion             | Metal corrosion                                                        | Moving average<br>RH level                                        | Two levels of severity based on adjusted RH                                    |



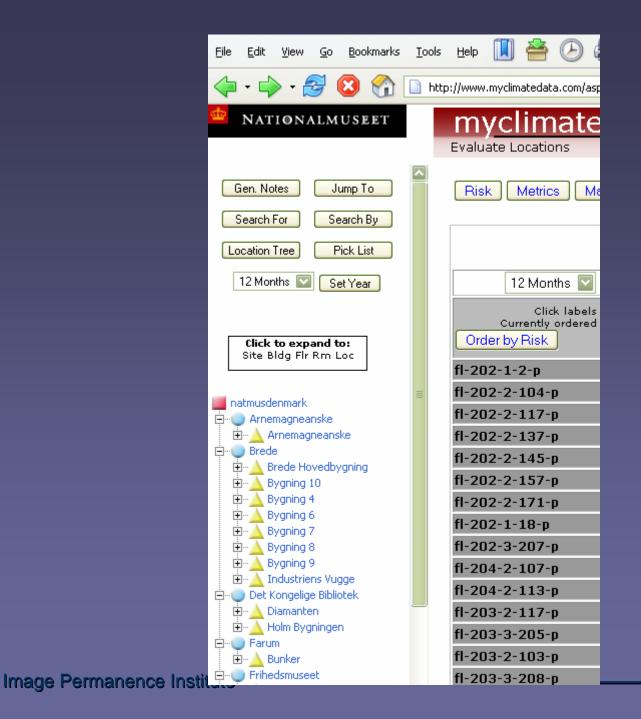
## **Environmental Metrics in Practice**

- Describe general characteristics of conditions in a concise, standardized way
- Enable quick screening for dangerous or changed conditions
- Must know collections to know which metrics matter most

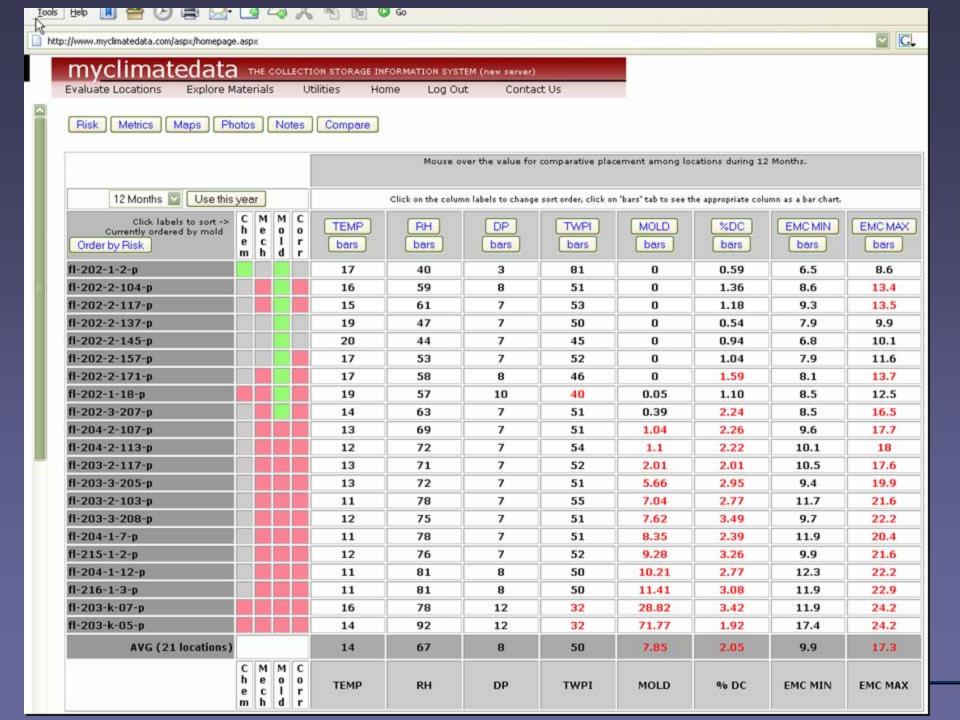


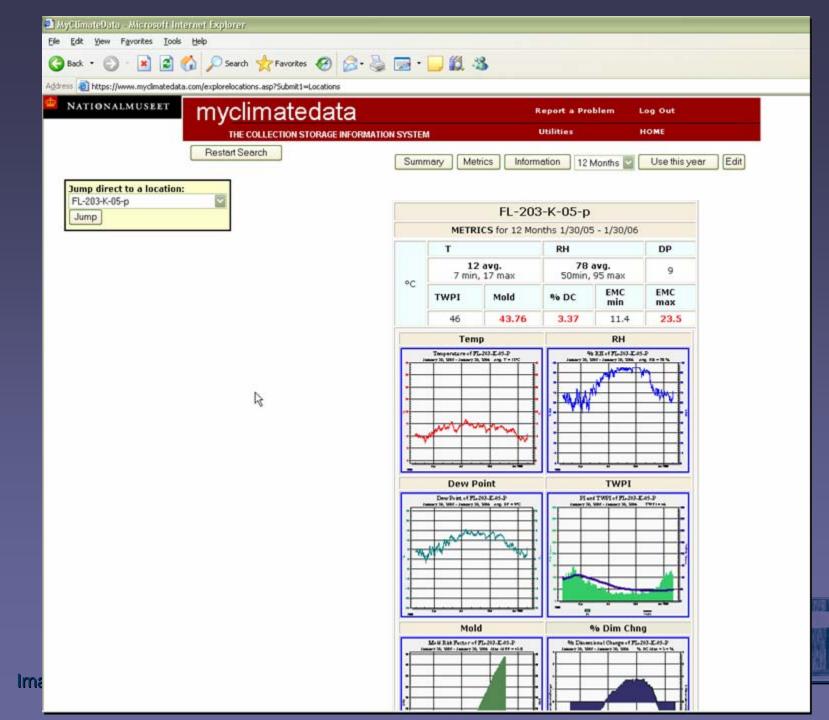
## Development of a Web Database and Interface to Climate Data

- Organize only once
- Consolidate databases
- Make data and analysis more accessible







## MyClimateData


- Extensible database of information on collections, buildings, systems
- Data storage and analysis on web server
- Geographic navigation or keyword searchable
- ► Floor plans, photos, notes











## **Project Outcomes**

- Working web system
- Strategic goals met
  - Characterize storage overall
  - Choose among alternatives for future construction



James M. Reilly
Director, Image Permanence Institute
Rochester Institute of Technology
70 Lomb Memorial Drive
Rochester, NY 14623-5604 USA

Jesper Stub Johnsen
Director of Conservation
The National Museum
P.O. Box 260, DK-2800 Kgs. Lyngby, Denmark

Lars Aasbjerg Jensen
Conservation Scientist
The National Museum
IC Modewegsvej, Brede,
DK-2800 Kgs. Lyngby Denmark

